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Total synthesis of theopederin B, isolated from marine sponge, was accomplished by coupling pederic
acid, as the left half, with trioxodecaline amine as the right half. Key reactions for synthesizing the amine
were SmI2-promoted Reformatsky reaction, stereoselective allylation followed by Sharpless asymmetric
epoxidation for construction of the functionalized side chain, and 1,3-dioxane ring construction followed
by azide insertion.

� 2009 Elsevier Ltd. All rights reserved.
Mycalamides,1 onnamides,2 and theopederins3 have been iso-
lated from marine sponges, and their structures (e.g., mycala-
mide A (1), theopederins B (2) and D (3); Fig. 1) strikingly
resemble that of pederin,4 a potent insect toxin isolated from
Pederus fuscipes. These marine natural products contain an iden-
tical pederic acid unit as the left half, and have the amino-triox-
adecaline ring with slightly different side chains as the right half.
They exhibit potent antitumor, antiviral, and immunosuppressive
activities. Their unique structures and potent biological activities
have attracted the attention of numerous synthetic chemists; to-
tal syntheses have been reported for pederin,5–9 mycalamides
A10–15 and B,10,16 onnamide A,17 and theopederin D (3).18,19 We
now report the first total synthesis of theopederin B (2), which
was isolated from marine sponges of the genus Theonella. It is
markedly cytotoxic against P388 murine leukemia cells (IC50

0.1 ng/mL) and shows promising antitumor activity (T/C = 173)
against P388 (ip).3 The right half has a methyl 5-hydroxy-6-
hexanoyl moiety as the side chain.

Our synthetic strategy is outlined in Scheme 1. Synthesis of
theopederin B (2) would be accomplished by coupling of pederic
acid i with amine ii. We have already reported an efficient syn-
thesis of the left half, i.20 The right half, ii, would be synthesized
via SmI2-promoted intramolecular Reformatsky reaction21 for
construction of d-lactone v having an axial alcohol, followed by
introduction of the side chain, then insertion of the hydroxyl
group (v?iv?iii), and construction of 1,3-dioxan-4-amine ring
(iii?ii).

The synthesis of the right half started with commercially
available D-arabitol (4) (Scheme 2). The Wittig reaction of alde-
hyde 5,22 prepared from 4, with Ph3P+MeBr� and NaHMDS affor-
ll rights reserved.
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ded olefin 6 (49% overall yield from 4), which was acylated with
Me2CBrCOBr to give bromoacetate 7 in 90% yield. After ozonoly-
sis of 7, treatment of the resulting aldehyde 8 with SmI2 in THF
resulted in intramolecular Reformatsky reaction to give d-lactone
923 in 88% yield (2 steps) as a single product, which has the de-
sired a-axial alcohol. The configuration was supported by the
coupling constant (J = 3.4 Hz) between 12-H and 13-H. Methyla-
tion of the alcohol in 9 was performed by treatment with NaH
and MeI in DMF or t-BuOK and MeI in THF to give the methyl
ether 10 in 96% or 91% yield, respectively.24 Reduction of the lac-
tone 10 with DIBAH, followed by acetylation afforded acetate 11
in 90% yield (2 steps). Treatment of 11 with allylTMS in the
presence of TMSOTf in CH2Cl2 at 0 �C effected stereoselective
allylation25 to give 1226 in 80% yield. NOE measurements and
the coupling constant between 12-H and 13-H in 12
(J = 2.0 Hz) support the conformation 12A having a-axial allyl
group (Fig. 2).

Next, introduction of a hydroxyl group at C-17 in the side
chain and construction of the 4-amino-1,3-dioxane ring were
accomplished (Scheme 3). Treatment of the benzylidene 12 with
DIBAH resulted in regioselective reductive ring-opening to give
alcohol-benzylether 1327 in 93% yield. At this stage, the confor-
mation of the tetrahydropyran ring 13 is different from that of
12. NOE measurements and the coupling constant between 12-
H and 13-H in 13 (J = 9.5 Hz) support the conformation of 13A
(Fig. 2). After Swern oxidation of the alcohol 13, acetalization
with CSA and CH(OMe)3 in MeOH afforded dimethylacetal 14
in 97% yield (2 steps). Elongation of the side chain was per-
formed by ozonolysis of the olefin in 14 and subsequent Horn-
er–Wadsworth–Emmons (HWE) reaction using (EtO)2P(O)CH2

CO2Et to give a,b-unsaturated ester 15 in 92% yield (2 steps).
After DIBAH reduction of 15, Sharpless asymmetric epoxidation28

of 16 with (+)-DET, Ti(O-i-Pr)4, and t-BuOOH afforded b-epoxide
17 in 88% yield. The Swern oxidation of 17 followed by HWE
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Figure 1. Structures of mycalamide A (1), theopederins B (2) and D (3).
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Scheme 1. Synthetic plan for theopederin B (2).
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reaction gave a,b-unsaturated ester 18 in 94% yield. Regioselec-
tive epoxide ring-opening by palladium-catalyzed reduction29

of 18 with HCOOH and subsequent acetylation afforded a,b-
unsaturated ester 19, hydrogenation of which, accompanied with
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removal of the benzyl group, gave alcohol 2030 in 88% yield (3
steps). Treatment of the acetal-alcohol 20 with paraformalde-
hyde and concd HCl followed by acetylation provided 1,3-diox-
ane acetal 21 in 66% yield (2 steps). Treatment of the acetal
21 with TMSN3 and TMSOTf in MeCN gave a 2:1 mixture of a-
and b-azides 2231 in 82% yield. Hydrogenation of 22 on Pd/C
afforded the right half amine 23.32

For coupling of the left and right halves, 24 and 23, we em-
ployed Kishi’s conditions10 (Scheme 4). Treatment of the carbox-
ylic acid 24 with p-TsCl and DMAP followed by addition of the
amine 23 produced a-amide 25 and b-amide 26 in 30% and
11% yields, respectively. Methanolysis of 25 with MeOLi in
MeOH furnished diol 2 in 45% yield. The spectral data33 of the
synthetic 2 were in good accordance with those of natural the-
opederin B (2).

In summary, the first total synthesis of theopederin B (2) was
accomplished through coupling of the left and right halves. We
had previously obtained the left half. The right half was synthe-
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sized via SmI2-promoted intramolecular Reformatsky-type reac-
tion, insertion of the side chain and functionalization, and con-
struction of the 4-amino-1,3-dioxadecaline ring.
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2H), 3.57 (s, 3H), 3.47 (d, J = 10.1 Hz, 1H), 3.32 (s, 3H), 2.41–2.38 (m, 2H),
2.33 (t, J = 7.6 Hz, 2H), 2.26 (dq, J = 7.0, 2.4 Hz, 1H), 1.76–1.30 (m, 6H),
1.21 (d, J = 6.7 Hz, 3H), 1.01 (d, J = 7.0 Hz, 3H), 0.99 (s, 3H), 0.88 (s, 3H);
13C NMR (CDCl3, 150 MHz) d 174.2, 171.8, 145.6, 110.6, 99.8, 86.9, 80.3,
79.0, 74.4, 73.8, 72.7, 71.2, 70.1, 69.6, 61.8, 51.5, 48.8, 41.6, 41.3, 36.5,
35.5, 33.8, 33.7, 23.1, 20.8, 17.9, 13.6, 12.1; HRMS (FAB) calcd for
C28H47NO11Na (M+Na+) 596.3041, found 596.3055.


